1277

\(1 = 72 - 71 \) \(2 = 7 - ( 12 - 7 )\) \(3 = 17 - 2 \cdot 7 \) \(4 = 7 - \frac{ 21 }{ 7 }\)
\(5 = \frac{ 17 - 7 }{ 2 }\) \(6 = 7 - 1^{27 }\) \(7 = 21 - 7 - 7 \) \(8 = 17 - 2 - 7 \)
\(9 = \frac{ 72 }{ 1 + 7 }\) \(10 = 27 - 17 \) \(11 = 12 - \frac{ 7 }{ 7 }\) \(12 = 12 - 7 + 7 \)
\(13 = \frac{ 7 }{ 7 } + 12 \) \(14 = 17 - \sqrt{2 + 7 }\) \(15 = 2 - 1 + 7 + 7 \) \(16 = \sqrt{71 - 7} \cdot 2 \)
\(17 = 1 + 2 + 7 + 7 \) \(18 = ( 7 - 1 ) \cdot \sqrt{2 + 7 }\) \(19 = 27 - 1 - 7 \) \(20 = ( 17 - 7 ) \cdot 2 \)
\(21 = \frac{ 21 }{ 7 } \cdot 7 \) \(22 = 17 - 2 + 7 \) \(23 = ( 1 + 7 ) \cdot 2 + 7 \) \(24 = \sqrt{17^{2}} + 7 \)
\(25 = \frac{ 7 \cdot 7 + 1 }{ 2 }\) \(26 = 12 + 7 + 7 \) \(27 = 17 \cdot 2 - 7 \) \(28 = 7 \cdot 7 - 21 \)
\(29 = ( 7 - 1 )^{2} - 7 \) \(30 = ( 1 + 7 + 7 ) \cdot 2 \) \(31 = \frac{ 217 }{ 7 }\) \(32 = 7^{2} - 17 \)
\(33 = 27 - 1 + 7 \) \(34 = 27 \cdot 1 + 7 \) \(35 = ( 12 - 7 ) \cdot 7 \) \(36 = ( 7 - 1^{7} )^{2 }\)
\(37 = 7 \cdot 7 - 12 \) \(38 = \frac{ 77 - 1 }{ 2 }\) \(39 = \frac{ 71 + 7 }{ 2 }\) \(40 = ( 7 - 1 ) \cdot 7 - 2 \)
\(41 = 17 \cdot 2 + 7 \) \(42 = ( \frac{ 21 }{ 7 } )! \cdot 7 \) \(43 = ( 7 - 1 )^{2} + 7 \) \(44 = 17 + 27 \)
\(45 = ?\) \(46 = 7 \cdot 7 - 1 - 2 \) \(47 = 1 \cdot 7 \cdot 7 - 2 \) \(48 = ( 17 + 7 ) \cdot 2 \)
\(49 = ( 7 - 2 )! - 71 \) \(50 = 7 \cdot 7 - 1 + 2 \) \(51 = \sqrt{2 + 7} \cdot 17 \) \(52 = 7 \cdot 7 + 1 + 2 \)
\(53 = ?\) \(54 = ( 1 + 7 ) \cdot 7 - 2 \) \(55 = 72 - 17 \) \(56 = 77 - 21 \)
\(57 = 71 - 2 \cdot 7 \) \(58 = ( 1 + 7 ) \cdot 7 + 2 \) \(59 = ?\) \(60 = \frac{ 7! }{ 12 \cdot 7 }\)
\(61 = 7 \cdot 7 + 12 \) \(62 = 71 - 2 - 7 \) \(63 = ( 1 \cdot 2 + 7 ) \cdot 7 \) \(64 = 72 - 1 - 7 \)
\(65 = 77 - 12 \) \(66 = 7^{2} + 17 \) \(67 = ?\) \(68 = 71 - \sqrt{2 + 7 }\)
\(69 = \frac{ 7! }{ 72 } - 1 \) \(70 = 7 \cdot 7 + 21 \) \(71 = 72 - 1^{7 }\) \(72 = 1^{7} \cdot 72 \)
\(73 = 1^{7} + 72 \) \(74 = 77 - 1 - 2 \) \(75 = 77 \cdot 1 - 2 \) \(76 = 71 - 2 + 7 \)
\(77 = 12 \cdot 7 - 7 \) \(78 = 72 - 1 + 7 \) \(79 = 72 \cdot 1 + 7 \) \(80 = 71 + 2 + 7 \)
\(81 = \sqrt{\sqrt{2 + 7}^{1 + 7 }}\) \(82 = ?\) \(83 = ( 1 + 2 )! + 77 \) \(84 = \sqrt{7 \cdot 7} \cdot 12 \)
\(85 = ( 7 - 2 ) \cdot 17 \) \(86 = ?\) \(87 = ?\) \(88 = ?\)
\(89 = 12 + 77 \) \(90 = \frac{ \sqrt{2 + 7}!! }{ 1 + 7 }\) \(91 = 12 \cdot 7 + 7 \) \(92 = ?\)
\(93 = ?\) \(94 = ?\) \(95 = ?\) \(96 = ( 7 \cdot 7 - 1 ) \cdot 2 \)
\(97 = 2 \cdot 7 \cdot 7 - 1 \) \(98 = 21 + 77 \) \(99 = 2 \cdot 7 \cdot 7 + 1 \) \(100 = ( 17 - 7 )^{2 }\)