| \(1 = 72 - 71 \) | \(2 = 7 - ( 12 - 7 )\) | \(3 = 17 - 2 \cdot 7 \) | \(4 = 7 - \frac{ 21 }{ 7 }\) |
| \(5 = \frac{ 17 - 7 }{ 2 }\) | \(6 = 7 - 1^{27 }\) | \(7 = 21 - 7 - 7 \) | \(8 = 17 - 2 - 7 \) |
| \(9 = \frac{ 72 }{ 1 + 7 }\) | \(10 = 27 - 17 \) | \(11 = 12 - \frac{ 7 }{ 7 }\) | \(12 = 12 - 7 + 7 \) |
| \(13 = \frac{ 7 }{ 7 } + 12 \) | \(14 = 17 - \sqrt{2 + 7 }\) | \(15 = 2 - 1 + 7 + 7 \) | \(16 = \sqrt{71 - 7} \cdot 2 \) |
| \(17 = 1 + 2 + 7 + 7 \) | \(18 = ( 7 - 1 ) \cdot \sqrt{2 + 7 }\) | \(19 = 27 - 1 - 7 \) | \(20 = ( 17 - 7 ) \cdot 2 \) |
| \(21 = \frac{ 21 }{ 7 } \cdot 7 \) | \(22 = 17 - 2 + 7 \) | \(23 = ( 1 + 7 ) \cdot 2 + 7 \) | \(24 = \sqrt{17^{2}} + 7 \) |
| \(25 = \frac{ 7 \cdot 7 + 1 }{ 2 }\) | \(26 = 12 + 7 + 7 \) | \(27 = 17 \cdot 2 - 7 \) | \(28 = 7 \cdot 7 - 21 \) |
| \(29 = ( 7 - 1 )^{2} - 7 \) | \(30 = ( 1 + 7 + 7 ) \cdot 2 \) | \(31 = \frac{ 217 }{ 7 }\) | \(32 = 7^{2} - 17 \) |
| \(33 = 27 - 1 + 7 \) | \(34 = 27 \cdot 1 + 7 \) | \(35 = ( 12 - 7 ) \cdot 7 \) | \(36 = ( 7 - 1^{7} )^{2 }\) |
| \(37 = 7 \cdot 7 - 12 \) | \(38 = \frac{ 77 - 1 }{ 2 }\) | \(39 = \frac{ 71 + 7 }{ 2 }\) | \(40 = ( 7 - 1 ) \cdot 7 - 2 \) |
| \(41 = 17 \cdot 2 + 7 \) | \(42 = ( \frac{ 21 }{ 7 } )! \cdot 7 \) | \(43 = ( 7 - 1 )^{2} + 7 \) | \(44 = 17 + 27 \) |
| \(45 = ?\) | \(46 = 7 \cdot 7 - 1 - 2 \) | \(47 = 1 \cdot 7 \cdot 7 - 2 \) | \(48 = ( 17 + 7 ) \cdot 2 \) |
| \(49 = ( 7 - 2 )! - 71 \) | \(50 = 7 \cdot 7 - 1 + 2 \) | \(51 = \sqrt{2 + 7} \cdot 17 \) | \(52 = 7 \cdot 7 + 1 + 2 \) |
| \(53 = ?\) | \(54 = ( 1 + 7 ) \cdot 7 - 2 \) | \(55 = 72 - 17 \) | \(56 = 77 - 21 \) |
| \(57 = 71 - 2 \cdot 7 \) | \(58 = ( 1 + 7 ) \cdot 7 + 2 \) | \(59 = ?\) | \(60 = \frac{ 7! }{ 12 \cdot 7 }\) |
| \(61 = 7 \cdot 7 + 12 \) | \(62 = 71 - 2 - 7 \) | \(63 = ( 1 \cdot 2 + 7 ) \cdot 7 \) | \(64 = 72 - 1 - 7 \) |
| \(65 = 77 - 12 \) | \(66 = 7^{2} + 17 \) | \(67 = ?\) | \(68 = 71 - \sqrt{2 + 7 }\) |
| \(69 = \frac{ 7! }{ 72 } - 1 \) | \(70 = 7 \cdot 7 + 21 \) | \(71 = 72 - 1^{7 }\) | \(72 = 1^{7} \cdot 72 \) |
| \(73 = 1^{7} + 72 \) | \(74 = 77 - 1 - 2 \) | \(75 = 77 \cdot 1 - 2 \) | \(76 = 71 - 2 + 7 \) |
| \(77 = 12 \cdot 7 - 7 \) | \(78 = 72 - 1 + 7 \) | \(79 = 72 \cdot 1 + 7 \) | \(80 = 71 + 2 + 7 \) |
| \(81 = \sqrt{\sqrt{2 + 7}^{1 + 7 }}\) | \(82 = ?\) | \(83 = ( 1 + 2 )! + 77 \) | \(84 = \sqrt{7 \cdot 7} \cdot 12 \) |
| \(85 = ( 7 - 2 ) \cdot 17 \) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
| \(89 = 12 + 77 \) | \(90 = \frac{ \sqrt{2 + 7}!! }{ 1 + 7 }\) | \(91 = 12 \cdot 7 + 7 \) | \(92 = ?\) |
| \(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ( 7 \cdot 7 - 1 ) \cdot 2 \) |
| \(97 = 2 \cdot 7 \cdot 7 - 1 \) | \(98 = 21 + 77 \) | \(99 = 2 \cdot 7 \cdot 7 + 1 \) | \(100 = ( 17 - 7 )^{2 }\) |