| \(1 = \frac{ 12 }{ 4 } - 2 \) | \(2 = \frac{ 24 }{ 12 }\) | \(3 = 24 - 21 \) | \(4 = \frac{ 12 - 4 }{ 2 }\) |
| \(5 = \frac{ 12 }{ 4 } + 2 \) | \(6 = \sqrt{12 + 24 }\) | \(7 = \frac{ 12 + 2 }{ \sqrt{4 } }\) | \(8 = 22 - 14 \) |
| \(9 = ( \frac{ 12 }{ 4 } )^{2 }\) | \(10 = \frac{ 12 }{ 2 } + 4 \) | \(11 = \frac{ 24 }{ 2 } - 1 \) | \(12 = 24 - 12 \) |
| \(13 = 14 - \frac{ 2 }{ 2 }\) | \(14 = 12 - 2 + 4 \) | \(15 = \sqrt{221 + 4 }\) | \(16 = ( 12 - 4 ) \cdot 2 \) |
| \(17 = 22 - 1 - 4 \) | \(18 = 12 + 2 + 4 \) | \(19 = 41 - 22 \) | \(20 = 12 \cdot 2 - 4 \) |
| \(21 = 42 - 21 \) | \(22 = 1^{4} \cdot 22 \) | \(23 = 21 - 2 + 4 \) | \(24 = \frac{ 12 }{ 2 } \cdot 4 \) |
| \(25 = 22 - 1 + 4 \) | \(26 = 14 \cdot 2 - 2 \) | \(27 = 21 + 2 + 4 \) | \(28 = 12 \cdot 2 + 4 \) |
| \(29 = 2 \cdot 4 + 21 \) | \(30 = 42 - 12 \) | \(31 = 2^{4} \cdot 2 - 1 \) | \(32 = ( 12 + 4 ) \cdot 2 \) |
| \(33 = \frac{ 4! }{ 2 } + 21 \) | \(34 = ( 21 - 4 ) \cdot 2 \) | \(35 = ( 2 + 4 )^{2} - 1 \) | \(36 = 12 + 24 \) |
| \(37 = 2^{4} + 21 \) | \(38 = 21 \cdot 2 - 4 \) | \(39 = 42 - 1 - 2 \) | \(40 = ( 12 - 2 ) \cdot 4 \) |
| \(41 = 41 - 2 + 2 \) | \(42 = \frac{ 21 \cdot 4 }{ 2 }\) | \(43 = 42 - 1 + 2 \) | \(44 = 42 \cdot 1 + 2 \) |
| \(45 = 21 + 24 \) | \(46 = 12 \cdot 4 - 2 \) | \(47 = 24 \cdot 2 - 1 \) | \(48 = 24 \cdot 1 \cdot 2 \) |
| \(49 = ( \frac{ 14 }{ 2 } )^{2 }\) | \(50 = 12 \cdot 4 + 2 \) | \(51 = 2 \cdot 4! + 1 + 2 \) | \(52 = ( 1 \cdot 2 + 4! ) \cdot 2 \) |
| \(53 = \frac{ 212 }{ 4 }\) | \(54 = 12 + 42 \) | \(55 = ?\) | \(56 = ( 12 + 2 ) \cdot 4 \) |
| \(57 = ?\) | \(58 = \frac{ ( 1 + 4 )! }{ 2 } - 2 \) | \(59 = \frac{ ( 1 + 4 )! - 2 }{ 2 }\) | \(60 = \sqrt{2^{12}} - 4 \) |
| \(61 = \frac{ 122 }{ \sqrt{4 } }\) | \(62 = \frac{ 124 }{ 2 }\) | \(63 = 21 + 42 \) | \(64 = ( 12 - 4 )^{2 }\) |
| \(65 = ( 2 + 2 )! + 41 \) | \(66 = ( 4 - 1 ) \cdot 22 \) | \(67 = \sqrt{\sqrt{2^{4!}}} + 1 + 2 \) | \(68 = \sqrt{2^{12}} + 4 \) |
| \(69 = 2 \cdot 4! + 21 \) | \(70 = ( 1 + 2 ) \cdot 4! - 2 \) | \(71 = \frac{ 142 }{ 2 }\) | \(72 = ( 2 + 4 ) \cdot 12 \) |
| \(73 = ?\) | \(74 = ( 1 + 2 ) \cdot 4! + 2 \) | \(75 = ?\) | \(76 = ( 21 - 2 ) \cdot 4 \) |
| \(77 = ?\) | \(78 = ( 41 - 2 ) \cdot 2 \) | \(79 = ( 1 + 2 )^{4} - 2 \) | \(80 = 41 \cdot 2 - 2 \) |
| \(81 = ( 2 - 1 + 2 )^{4 }\) | \(82 = 21 \cdot 4 - 2 \) | \(83 = 42 \cdot 2 - 1 \) | \(84 = ( 22 - 1 ) \cdot 4 \) |
| \(85 = 42 \cdot 2 + 1 \) | \(86 = 21 \cdot 4 + 2 \) | \(87 = 22 \cdot 4 - 1 \) | \(88 = 22 \cdot 1 \cdot 4 \) |
| \(89 = 22 \cdot 4 + 1 \) | \(90 = ( 21 + 4! ) \cdot 2 \) | \(91 = ?\) | \(92 = ( 21 + 2 ) \cdot 4 \) |
| \(93 = ?\) | \(94 = ( 2 \cdot 4! - 1 ) \cdot 2 \) | \(95 = ( 2 + 2 ) \cdot 4! - 1 \) | \(96 = 12 \cdot 2 \cdot 4 \) |
| \(97 = ( 2 + 2 ) \cdot 4! + 1 \) | \(98 = 122 - 4 !\) | \(99 = ?\) | \(100 = ( 12 - 2 )^{\sqrt{4 }}\) |