| \(1 = ( 279 \cdot 0 )!\) | \(2 = 79 \cdot 0 + 2 \) | \(3 = \frac{ 20 + 7 }{ 9 }\) | \(4 = 20 - 7 - 9 \) |
| \(5 = \frac{ 20 }{ 7 - \sqrt{9 } }\) | \(6 = 7 - 29^{0 }\) | \(7 = 29 \cdot 0 + 7 \) | \(8 = 9 - 27^{0 }\) |
| \(9 = 27 \cdot 0 + 9 \) | \(10 = \frac{ 20 }{ 9 - 7 }\) | \(11 = 9^{2} - 70 \) | \(12 = 7^{0} + 2 + 9 \) |
| \(13 = \frac{ 92 - 0! }{ 7 }\) | \(14 = \frac{ 70 }{ 2 + \sqrt{9 } }\) | \(15 = 7 - 2^{0} + 9 \) | \(16 = 20 - 7 + \sqrt{9 }\) |
| \(17 = 27 - 0! - 9 \) | \(18 = 90 - 72 \) | \(19 = 27 + 0! - 9 \) | \(20 = \sqrt{20^{9 - 7 }}\) |
| \(21 = 29 - 0! - 7 \) | \(22 = 92 - 70 \) | \(23 = \frac{ 207 }{ 9 }\) | \(24 = ( 20 - 7 - 9 )!\) |
| \(25 = ( 0 + 2 ) \cdot 9 + 7 \) | \(26 = 27 - 9^{0 }\) | \(27 = \sqrt{720 + 9 }\) | \(28 = 9^{0} + 27 \) |
| \(29 = 0 \cdot 7 + 29 \) | \(30 = \frac{ 270 }{ 9 }\) | \(31 = 27 + 0! + \sqrt{9 }\) | \(32 = \frac{ 70 }{ 2 } - \sqrt{9 }\) |
| \(33 = 20 + 7 + \sqrt{9 }!\) | \(34 = 70 - \sqrt{9}!^{2 }\) | \(35 = 27 - 0! + 9 \) | \(36 = 20 + 7 + 9 \) |
| \(37 = 27 + 0! + 9 \) | \(38 = \frac{ 90 }{ 2 } - 7 \) | \(39 = ( 20 - 7 ) \cdot \sqrt{9 }\) | \(40 = ( 9 - 7 ) \cdot 20 \) |
| \(41 = 70 - 29 \) | \(42 = ( 0 + 2 ) \cdot 7 \cdot \sqrt{9 }\) | \(43 = 7 \cdot 9 - 20 \) | \(44 = \frac{ 70 }{ 2 } + 9 \) |
| \(45 = \frac{ 270 }{ \sqrt{9 }! }\) | \(46 = 7^{0 + 2} - \sqrt{9 }\) | \(47 = 7^{2} + 0! - \sqrt{9 }\) | \(48 = \frac{ 97 - 0! }{ 2 }\) |
| \(49 = \frac{ 97 + 0! }{ 2 }\) | \(50 = 9^{0} + 7^{2 }\) | \(51 = ( 0! + \sqrt{9} )! + 27 \) | \(52 = 70 - 2 \cdot 9 \) |
| \(53 = 20 \cdot \sqrt{9} - 7 \) | \(54 = \frac{ 7! }{ 90 } - 2 \) | \(55 = 2^{7 - 0!} - 9 \) | \(56 = ( 9 - 2^{0} ) \cdot 7 \) |
| \(57 = 7^{2} - 0! + 9 \) | \(58 = \frac{ 7! }{ 90 } + 2 \) | \(59 = 79 - 20 \) | \(60 = 7 \cdot 9 - 0! - 2 \) |
| \(61 = \sqrt{70^{2}} - 9 \) | \(62 = 70 - 2^{\sqrt{9 }}\) | \(63 = 90 - 27 \) | \(64 = 70 - 2 \cdot \sqrt{9 }\) |
| \(65 = 70 - 2 - \sqrt{9 }\) | \(66 = 70 + 2 - \sqrt{9 }!\) | \(67 = 20 \cdot \sqrt{9} + 7 \) | \(68 = 72 - 0! - \sqrt{9 }\) |
| \(69 = \frac{ 207 }{ \sqrt{9 } }\) | \(70 = ( \sqrt{9} - 2 ) \cdot 70 \) | \(71 = 72 - 9^{0 }\) | \(72 = 0 \cdot 9 + 72 \) |
| \(73 = 9^{0} + 72 \) | \(74 = 9^{0 + 2} - 7 \) | \(75 = 70 + 2 + \sqrt{9 }\) | \(76 = 90 - 2 \cdot 7 \) |
| \(77 = 97 - 20 \) | \(78 = \frac{ 702 }{ 9 }\) | \(79 = 0 \cdot 2 + 79 \) | \(80 = \frac{ 720 }{ 9 }\) |
| \(81 = 70 + 2 + 9 \) | \(82 = 72 + 0! + 9 \) | \(83 = 7 \cdot 9 + 20 \) | \(84 = 92 - 0! - 7 \) |
| \(85 = 90 + 2 - 7 \) | \(86 = 92 + 0! - 7 \) | \(87 = 90 - \sqrt{2 + 7 }\) | \(88 = 2 \cdot 9 + 70 \) |
| \(89 = 9^{2} + 0! + 7 \) | \(90 = \frac{ 270 }{ \sqrt{9 } }\) | \(91 = 92 - 7^{0 }\) | \(92 = 0 \cdot 7 + 92 \) |
| \(93 = 7^{0} + 92 \) | \(94 = 97 - 0! - 2 \) | \(95 = 90 - 2 + 7 \) | \(96 = 97 - 2^{0 }\) |
| \(97 = 0 \cdot 2 + 97 \) | \(98 = 2^{0} + 97 \) | \(99 = 20 + 79 \) | \(100 = 92 + 0! + 7 \) |