| \(1 = ( 248 \cdot 0 )!\) | \(2 = \frac{ 20 - 4 }{ 8 }\) | \(3 = 8 - \frac{ 20 }{ 4 }\) | \(4 = 28 \cdot 0 + 4 \) |
| \(5 = \frac{ 20 }{ 8 - 4 }\) | \(6 = ( 8 - \frac{ 20 }{ 4 } )!\) | \(7 = \frac{ 20 + 8 }{ 4 }\) | \(8 = \sqrt{84 - 20 }\) |
| \(9 = 24^{0} + 8 \) | \(10 = \frac{ 20 \cdot 4 }{ 8 }\) | \(11 = 4 - 2^{0} + 8 \) | \(12 = 40 - 28 \) |
| \(13 = \frac{ 20 }{ 4 } + 8 \) | \(14 = \sqrt{204 - 8 }\) | \(15 = \frac{ ( \frac{ 20 }{ 4 } )! }{ 8 }\) | \(16 = 20 + 4 - 8 \) |
| \(17 = 20 - \frac{ 4! }{ 8 }\) | \(18 = 20 - \frac{ 8 }{ 4 }\) | \(19 = 2 \cdot 8 - 0! + 4 \) | \(20 = \sqrt{20^{\frac{ 8 }{ 4 }}}\) |
| \(21 = 24 - \sqrt{0! + 8 }\) | \(22 = \frac{ 8 }{ 4 } + 20 \) | \(23 = 24 - 8^{0 }\) | \(24 = 20 - 4 + 8 \) |
| \(25 = 8^{0} + 24 \) | \(26 = 20 - \sqrt{4} + 8 \) | \(27 = 28 - 4^{0 }\) | \(28 = 48 - 20 \) |
| \(29 = 4^{0} + 28 \) | \(30 = \frac{ 240 }{ 8 }\) | \(31 = 24 - 0! + 8 \) | \(32 = 20 + 4 + 8 \) |
| \(33 = 24 + 0! + 8 \) | \(34 = 40 + 2 - 8 \) | \(35 = 42 + 0! - 8 \) | \(36 = 40 - \frac{ 8 }{ 2 }\) |
| \(37 = ( 8 - 2 )^{\sqrt{4}} + 0 !\) | \(38 = 80 - 42 \) | \(39 = \frac{ 80 - 2 }{ \sqrt{4 } }\) | \(40 = \frac{ 20 }{ 4 } \cdot 8 \) |
| \(41 = 42 - 8^{0 }\) | \(42 = 82 - 40 \) | \(43 = 8^{0} + 42 \) | \(44 = \frac{ 8 }{ 2 } + 40 \) |
| \(45 = 48 - 0! - 2 \) | \(46 = 40 - 2 + 8 \) | \(47 = 48 - 2^{0 }\) | \(48 = ( 20 - 8 ) \cdot 4 \) |
| \(49 = 2^{0} + 48 \) | \(50 = 40 + 2 + 8 \) | \(51 = 42 + 0! + 8 \) | \(52 = \frac{ 208 }{ 4 }\) |
| \(53 = 28 + 0! + 4 !\) | \(54 = 80 - 2 - 4 !\) | \(55 = 28 \cdot \sqrt{4} - 0 !\) | \(56 = 80 - 24 \) |
| \(57 = 28 \cdot \sqrt{4} + 0 !\) | \(58 = 80 + 2 - 4 !\) | \(59 = 82 + 0! - 4 !\) | \(60 = \frac{ 20 \cdot 4! }{ 8 }\) |
| \(61 = 8^{2} + 0! - 4 \) | \(62 = 8^{0 + 2} - \sqrt{4 }\) | \(63 = 8^{2} - 4^{0 }\) | \(64 = 84 - 20 \) |
| \(65 = 4^{0} + 8^{2 }\) | \(66 = 8^{0 + 2} + \sqrt{4 }\) | \(67 = 8^{2} - 0! + 4 \) | \(68 = 20 + 48 \) |
| \(69 = 8^{2} + 0! + 4 \) | \(70 = \frac{ 280 }{ 4 }\) | \(71 = \sqrt{( \frac{ 28 }{ 4 } )! + 0 !}\) | \(72 = 20 \cdot 4 - 8 \) |
| \(73 = ( 0! + 2 )^{4} - 8 \) | \(74 = 80 - 2 - 4 \) | \(75 = ?\) | \(76 = 80 - 2 - \sqrt{4 }\) |
| \(77 = 82 - 0! - 4 \) | \(78 = 80 + 2 - 4 \) | \(79 = 80 - \frac{ 2 }{ \sqrt{4 } }\) | \(80 = ( 8 - 4 ) \cdot 20 \) |
| \(81 = 82 - 4^{0 }\) | \(82 = 80 - 2 + 4 \) | \(83 = 4^{0} + 82 \) | \(84 = 0 \cdot 2 + 84 \) |
| \(85 = 2^{0} + 84 \) | \(86 = 80 + 2 + 4 \) | \(87 = 82 + 0! + 4 \) | \(88 = 20 \cdot 4 + 8 \) |
| \(89 = ( 0! + 2 )^{4} + 8 \) | \(90 = ( 0! + 2 )! + 84 \) | \(91 = \frac{ ( 2 + 4 )! }{ 8 } + 0 !\) | \(92 = \frac{ 4! }{ 2 } + 80 \) |
| \(93 = \frac{ ( 0! + 2 )!! + 4! }{ 8 }\) | \(94 = ( 48 - 0! ) \cdot 2 \) | \(95 = 48 \cdot 2 - 0 !\) | \(96 = \frac{ 8! }{ 420 }\) |
| \(97 = 48 \cdot 2 + 0 !\) | \(98 = ( 48 + 0! ) \cdot 2 \) | \(99 = ( 2 + 8 )^{\sqrt{4}} - 0 !\) | \(100 = \frac{ \sqrt{\sqrt{20^{8}}} }{ 4 }\) |