| \(1 = ( 209 \cdot 0 )!\) | \(2 = 90 \cdot 0 + 2 \) | \(3 = 90^{0} + 2 \) | \(4 = 20^{0} + \sqrt{9 }\) |
| \(5 = \frac{ 0^{0} + 9 }{ 2 }\) | \(6 = ( 90^{0} + 2 )!\) | \(7 = 9 - ( 0 + 0 + 2 )\) | \(8 = 9 - 20^{0 }\) |
| \(9 = 20 \cdot 0 + 9 \) | \(10 = 20^{0} + 9 \) | \(11 = 20 + 0 - 9 \) | \(12 = 20 + 0! - 9 \) |
| \(13 = 20 - 0! - \sqrt{9 }!\) | \(14 = 20 + 0 - \sqrt{9 }!\) | \(15 = \frac{ \sqrt{900} }{ 2 }\) | \(16 = ( 9 - 0^{0} ) \cdot 2 \) |
| \(17 = \sqrt{290 - 0 !}\) | \(18 = ( 0 + 0 + 2 ) \cdot 9 \) | \(19 = 20 - 9^{0 }\) | \(20 = 0 \cdot 9 + 20 \) |
| \(21 = 9^{0} + 20 \) | \(22 = 20 - 0! + \sqrt{9 }\) | \(23 = 20 + 0 + \sqrt{9 }\) | \(24 = ( 20^{0} + \sqrt{9 } )!\) |
| \(25 = 20 - 0! + \sqrt{9 }!\) | \(26 = 20 + 0 + \sqrt{9 }!\) | \(27 = ( 0^{0} + 2 ) \cdot 9 \) | \(28 = \sqrt{900} - 2 \) |
| \(29 = 20 + 0 + 9 \) | \(30 = 0^{0} + 29 \) | \(31 = 29 + 0! + 0 !\) | \(32 = \sqrt{900} + 2 \) |
| \(33 = ( 0! + 0! + 2 )! + 9 \) | \(34 = \sqrt{9}!^{0! + 0!} - 2 \) | \(35 = \sqrt{9}!^{2} - 0^{0 }\) | \(36 = \frac{ \sqrt{9}!! }{ 20 + 0 }\) |
| \(37 = 0^{0} + \sqrt{9}!^{2 }\) | \(38 = \sqrt{9}!^{0! + 0!} + 2 \) | \(39 = ?\) | \(40 = ( \sqrt{9} - 0! ) \cdot 20 \) |
| \(41 = ?\) | \(42 = ( ( 0! + 2 )! + 0! ) \cdot \sqrt{9 }!\) | \(43 = ?\) | \(44 = \frac{ 90 }{ 2 } - 0 !\) |
| \(45 = \frac{ 90 + 0 }{ 2 }\) | \(46 = \frac{ 90 }{ 2 } + 0 !\) | \(47 = ( 0! + \sqrt{9} )! \cdot 2 - 0 !\) | \(48 = ( 0^{0} + \sqrt{9} )! \cdot 2 \) |
| \(49 = ( 0^{0} + \sqrt{9}! )^{2 }\) | \(50 = ( ( 0! + \sqrt{9} )! + 0! ) \cdot 2 \) | \(51 = ?\) | \(52 = ?\) |
| \(53 = ( 0! + 2 )! \cdot 9 - 0 !\) | \(54 = ( 0^{0} + 2 )! \cdot 9 \) | \(55 = ( 0! + 2 )! \cdot 9 + 0 !\) | \(56 = \frac{ ( 9 - 0! )! }{ ( 0! + 2 )!! }\) |
| \(57 = ( 20 - 0! ) \cdot \sqrt{9 }\) | \(58 = ( 0! + 0! ) \cdot 29 \) | \(59 = 20 \cdot \sqrt{9} - 0 !\) | \(60 = \sqrt{900} \cdot 2 \) |
| \(61 = 20 \cdot \sqrt{9} + 0 !\) | \(62 = ( 0! + 0! )^{\sqrt{9}!} - 2 \) | \(63 = ( 20 + 0! ) \cdot \sqrt{9 }\) | \(64 = ( 9 - 0^{0} )^{2 }\) |
| \(65 = ( 9 - 0! )^{2} + 0 !\) | \(66 = ( 0! + 0! )^{\sqrt{9}!} + 2 \) | \(67 = ?\) | \(68 = ?\) |
| \(69 = \sqrt{( 0! + \sqrt{9}! )! + 0!} - 2 \) | \(70 = 90 - 20 \) | \(71 = \sqrt{0^{0} + ( 9 - 2 )!}\) | \(72 = ( 0! + 0! + 2 )! \cdot \sqrt{9 }\) |
| \(73 = \sqrt{( 0! + \sqrt{9}! )! + 0!} + 2 \) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
| \(77 = ?\) | \(78 = ?\) | \(79 = 9^{0! + 0!} - 2 \) | \(80 = 9^{2} - 0^{0 }\) |
| \(81 = 9^{0 + 0 + 2 }\) | \(82 = 0^{0} + 9^{2 }\) | \(83 = 9^{0! + 0!} + 2 \) | \(84 = 90 - ( 0! + 2 )!\) |
| \(85 = ?\) | \(86 = ?\) | \(87 = 90 - 0! - 2 \) | \(88 = 90 + 0 - 2 \) |
| \(89 = 90 - 2^{0 }\) | \(90 = 0 \cdot 2 + 90 \) | \(91 = 2^{0} + 90 \) | \(92 = 90 + 0 + 2 \) |
| \(93 = 0^{0} + 92 \) | \(94 = 92 + 0! + 0 !\) | \(95 = ?\) | \(96 = ( 0! + 2 )! + 90 \) |
| \(97 = ?\) | \(98 = ?\) | \(99 = ( 0! + 9 )^{2} - 0 !\) | \(100 = ( 0^{0} + 9 )^{2 }\) |